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ABSTRACT 
This paper introduces the design of superconductive magnet 
configurations in Magnetic Resonance Imaging (MRI) systems as 
a challenging real-world problem for Evolutionary Algorithms 
(EAs). Analysis of the problem structure is conducted using a 
general statistical method, which could be easily applied to other 
problems. The results suggest that the problem is highly 
multimodal and likely to present a significant challenge for many 
algorithms. Through a series of preliminary experiments, a 
continuous Estimation of Distribution Algorithm (EDA) is shown 
to be able to generate promising designs with a small 
computational effort. The importance of utilizing problem-specific 
knowledge and the ability of an algorithm to capture dependencies 
in solving complex real-world problems is also highlighted. 

Categories and Subject Descriptors 
J.2 [Physical Science and Engineering]: Electronics. 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
EDAs, Real-World Problem, MRI 

1. INTRODUCTION 
In the field of Evolutionary Computation, a large number of 
Evolutionary Algorithms (EAs) and variations continue to appear 
in the literature. Typically, a new algorithm is tested on some 
well-known artificial benchmark problems and conclusions about 
its performance are then made based on corresponding 
experimental results.  Although the ultimate goal of EAs is to 
solve various problems in the real world, many of them have 
never been tested on such problems, especially large-scale 
applications. An algorithm’s performance on benchmark 
problems, while useful in validating the principles of the 

algorithm, provides little confidence on its performance in 
significantly more complex situations. As a consequence, 
although people in EA community do believe in the performance 
and potential of newly introduced EAs in solving challenging 
real-world problems, these algorithms have not yet played an 
important role in practice where optimization problems are still 
largely being attempted by various traditional methods. 
On the other hand, although there have been more and more 
applications of EAs in real-world problems, many of them are 
focused on solving a very specific engineering problem and it can 
be difficult for other researchers to extract and transfer knowledge 
gained in solving one problem to assist in solving other problems 
and/or to gain insight into the performance of algorithms. For 
example, identifying and exploiting structural features of a 
problem has the potential to provide useful information for 
choosing an appropriate optimization algorithm and to assist in 
understanding the performance of an algorithm. Unfortunately, 
detailed analysis of problem structure is itself a challenging 
problem that has received relatively little attention. Hence, there 
are few guidelines to assist in selecting one of the many 
algorithms available to a given real-world problem. Furthermore, 
experimental factors that could influence the performance of EAs 
such as parameter settings, population initialization, constraint 
handling might not be completely specified and usually final or 
best results are the focus rather than reporting the complete set of 
experimental results obtained. All of these issues contribute to 
making the transfer of new EAs to real-world applications a 
challenging task.  
In this paper, a case study on the magnet configuration design task 
in Magnetic Resonance Imaging (MRI) systems is conducted, 
which has recently been tackled by various metaheuristic 
algorithms [1, 4, 10]. The purpose is two-fold. Firstly, we want to 
evaluate a relatively new class of EAs - Estimation of Distribution 
Algorithms (EDAs)[8] on a real-world problem, which has not 
been done before. Secondly, we aim to investigate certain 
structural features of this problem, using techniques that can be 
applied to other problems, and to relate the performance of the 
algorithm to the problem structure. 
The rest part of the paper is organized as follows. The next section 
gives a detailed description of the problem specification while 
Section 3 discusses a statistical method for estimating the number 
of optima in the search space and applies it to the MRI design 
problem. Experimental results using EDAs on the problem are 
presented in Section 4 and our work is concluded in Section 5 
with directions for future work. 
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2. OVERVIEW OF MRI MAGNET DESIGN 
Magnetic Resonance Imaging (MRI) is an imaging technique 
widely used to produce high quality images of the inside of the 
human body. The general shape of a MRI system is roughly 
cylindrical, containing a deep bore in the centre where the patient 
is to be placed. The magnet system is used to produce an intense 
and homogeneous field in the region to be imaged to obtain 
images of good quality. A major challenge is to shorten the MRI 
magnet design (conventional systems are usually around 1.8 to 2 
m in length) so that the perception of claustrophobia experienced 
by patients can be reduced. This is a significant engineering 
challenge as the field homogeneity is strongly dependent on the 
overall length of the coil structure.  

 
Figure 1. A six-coil symmetric magnet structure in a 

conventional MRI system.  

As shown in Figure 1, a typical magnet design contains a number 
of concentric coils with regard to Z-axis, which are symmetric 
about the X-Y plane (i.e., vertical to Z-axis, not shown in the 
figure). Each coil has a ring shape with rectangular cross-section 
and contains many turns of superconductive wires. The imaging 
area (dsv) is specified by a spherical area in the origin with a 
typical diameter of 45 or 50 cm. The major optimization objective 
is to create a very homogeneous field within dsv by finding the 
best shapes and positions of these coils. For each coil, there are 
four parameters:  

• axial position (distance from the origin to the middle of 
the coil along Z-axis)  

• axial width 

• number of turns (negative value represents a negatively 
wound coil)  

• inner radius of the ring  
Since coils in a typical design are arranged in symmetric pairs, for 
a design with N coils, the search space has 2N dimensions. Note 
that the value of N needs to be predefined unless the optimization 
algorithm in use can handle variable length candidates. If N is too 
small, it may be impossible to find the required solution given 
certain constrains (the minimum number of coils is usually not 
known a priori). On the other hand, too many coils will make the 
search more difficult and the design over-complicated. 
The objective is to minimize the inhomogeneity of the field as 
measured in parts per million (ppm) with 0 ppm being the global 
optimum in theory (i.e., often not possible in engineering). A fast 
algorithm based on coil cross-section is adopted in this paper to 
calculate the homogeneity, allowing large numbers of candidate 

solutions to be evaluated within a reasonable amount of time[7]. 
Apart from this homogeneity requirement, in practice, it is also 
desirable to minimize the field outside the MRI system for the 
safety of other people. This secondary objective will introduce a 
new fitness function and could be combined with the main fitness 
function. This objective is not included in our current experiments 
but will be pursued in the future. 
Finally, there are also various physical constraints embedded in 
the design. For example, the overall space is often restricted to a 
box area. Within this area, each coil cannot overlap with or be too 
close to others. Otherwise the design would be physically 
impossible to implement. Also, it is preferable not to have very 
thin vertical coils because they may bend due to the strong 
magnetic force. 

3. ANALYSIS OF PROBLEM STRUCTURE 
3.1 Estimation of Search Space Multimodality 
One key step before applying any optimization algorithms is to 
have some idea of the structure of the problem to be solved. The 
reason is that, among the huge number of existing optimization 
algorithms, different algorithms often employ different heuristics 
and are likely to have their own strengths and weaknesses. So, 
having a deep understanding of the problem structure may be very 
helpful for choosing the appropriate algorithms. For example, if a 
problem is known to have a large number local optima, simple hill 
climbing algorithms or other gradient-based algorithms may be 
considered unsuitable due to their local searching behavior. On 
the other hand, if the problem structure is not complex, these 
algorithms may be expected to be more efficient and may yield 
more accurate results compared to population-based stochastic 
algorithms like EAs. 
Little emphasis has been placed on investigating problem 
structure in previous work and algorithms have often been chosen 
without any clear justification. This may be partially due to the 
difficulty in characterizing the structure of large-scale, real-world 
problems. In such problems, the search spaces are often of high 
dimensionality. As a result, it is impractical if not impossible to 
perform extensive investigation. In other words, the effort 
required to explore the problem structure may be even greater 
than that needed to solve the problem itself. 
Fortunately, with the help of statistical methods, it is possible to 
estimate some problem properties at an affordable computational 
cost. In this paper, we adapt the approach used in [3] to estimate 
the number of optima in the search space, which is one property 
of interest.  
Suppose K is the total number of all possible unique outputs from 
a black-box system, each of which is equally likely to be 
generated at each time step.  The question is how to efficiently 
estimate the value of K based only on observations of the output? 
The probability of consecutively observing N-1 unique outputs in 
the first N-1 steps and one duplicate output in the Nth step is 
specified by: 
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Given a fixed K, Eq.1 could be regarded as the probability density 
function of N. Figure 2 (top) shows the distributions of N with 
different K values. It is clear that for different K values, the 
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distributions of N are different and the curves flatten out as K 
increases. The mean value of each density function can also be 
calculated according to:  

]1,2[)),(( +∈⋅= KNKNPNENK          Eq. 2 

Figure 2 (bottom) gives the mean values of N for some selected K 
values showing that as K increases from 300 to 100000, the mean 
value of N also increases but much more slowly (i.e., from around 
20 to nearly 400). Note that those density functions are typically 
not symmetric, which means that the mean and the median are 
unlikely to be equal.  

 

 
Figure 2. Probability distributions (top) and mean values of N 

(bottom) for different K values. 

One approach to the estimation of K based on the above analysis 
is to conduct M independent sampling experiments. In each 
experiment, the outputs are monitored and the value of N (i.e., the 
number of outputs observed till the first duplicate) is returned as 
the experimental result. Given a set of such N values, a principled 
way to estimate a value for K is to use the maximum likelihood 
method by searching for the K whose corresponding probability 
density function is most likely to support the observed N values: 
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In practice, a number of experiments may be conducted in order to 
improve the accuracy of estimation. However, for large M values, 
it may be time-consuming to calculate Eq. 3, especially when 
there are a huge number of possible K values to be examined. A 
simpler method is to only utilize the sample mean of the N values 
and search different K values for the best mean value match. The 
advantage is that Eq. 2 is usually easier to calculate and can be 
pre-calculated as shown in Figure 2 (bottom). 
The efficiency of this method is easily demonstrated. For example, 
assume that the unknown value of K=100,000, so that NK≈400. If 
10 of the experimental trials described above are conducted, 
leading to the observation of (ideally), around 4000 outputs, then 
this will provide a good estimation of the true value of K after 
observing only 4% of the total number of possible outputs. As K 
goes up, the efficiency could improve even further. If K is scaled 
up by a factor of 10 (i.e., K=1,000,000), NK will only be scaled up 
by a factor of around 3 (i.e., NK≈1200). In this case, the portion of 
all optima that need to be explored is down to around 1.2%. One 
thing that needs to be noted is that as K increases, the variance of 
the probability density function also increases. According to the 
Central Limit Theorem, the number of trials also needs to be 
increased in order to reduce the randomness of NK. 
Similarly, each optimization problem could be regarded as a 
black-box and each optimum corresponds to a unique output. By 
randomly sampling optima and counting the number of samples 
required to find the first duplicate, it is also possible to use the 
approach discussed here to perform estimation. An obvious 
question is how to sample optima in an optimization problem? 
Typically, this could be done by running a multi-restart hill 
climbing algorithm until it gets stuck with each time using a 
randomly chosen starting point. In an idealized situation, this hill-
climbing algorithm should be able to find one optimum at the end 
of each trial. One issue is that since different optima are likely to 
have different basin sizes, the chance of finding each optimum 
may differ, which violates the assumption of equally probable 
outcomes. In this case, values of N produced will tend to be 
smaller and the true value of K may be underestimated. 
To sample local optima using a hill climbing algorithm, the first 
choice that needs to be made is the definition of neighborhood, 
which is essential in determining whether a point is an optimum. 
There is another issue about the step size. In continuous spaces, 
with a large step size, an algorithm could often jump over some 
optima with small basins of attraction and thus the number of 
optima found may be less than the number of optima found by 
using a smaller step size. In other words, a large step size could 
effectively smooth the search space. Furthermore, in continuous 
spaces, the exact location of an optimum is related to the floating-
point precision of the computer used. This creates another 
difficulty in determining whether two hill climbing trials getting 
stuck at different but close locations actually correspond to the 
same optimum, especially when there is no a priori knowledge 
about the problem structure.  
Due to the above issues, the estimated K value is typically lower 
than its true value. Also, due to the inherent randomness in 
sampling, this estimation could not be expected to be very 
accurate. However, from a practical point of view, this method 
should still be useful as an indicator of the multimodality of the 
search space. Please refer to [5, 6] for related works on estimating 
the number of optima.                                              
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3.2 The Multimodality of the MRI Problem 
In order to apply a hill-climber to our problem, the neighborhood 
could be defined in a number of different ways. One possibility is 
to allow all parameters to be changed simultaneously. In this 
situation, a hill climber needs to examine 3n-1 neighbors in order 
to decide where to move next (i.e., n is the dimensionality). 
Obviously, this could quickly become intractable as n goes up. 
Alternatively, the hill climber could be restricted to moving along 
one dimension at a time, searching up to 2n neighbors. However, 
the issue is that if there is some dependence in the local space 
around an optimum, changing one parameter a time may make the 
algorithm get stuck when it is still distant from the optimum, 
which means that simply knowing a hill climber has stopped does 
not necessarily imply that it has found an optimum or is even very 
close to one (i.e., the first method could face the same issue if the 
step size is not appropriate). One solution is to use a very small 
step size but the algorithm may then need a significant number of 
steps to stop, which could be very time consuming. The approach 
used in our work is to start the hill climbing algorithm with a 
moderate step size and once it gets stuck, a very small step size is 
then used to conduct fine searching to make sure that the 
algorithm could finally be as close to the optimum as possible. 
A 10-coil symmetric design was chosen as the target and only 
those 5 coils on the positive part of Z-axis were optimized, which 
created a 20D search space. The boundaries of the search space 
were set (for each coil) as: 

• axial position: [20, 700] 

• axial width: [20, 100] 

• number of turns: [-5000, 5000] 

• inner radius: [480, 520]  
These values represent a typical feasible search space. For each 
hill climbing trial, the starting point and all points visited were 
restricted to the above area with the additional constraint that all 
coils must be within the positive part of Z-axis. If any variable 
exceeds its corresponding boundary, its value will be set to the 
boundary value. Furthermore, if a coil moves into the negative 
part of Z-axis, it will be moved back by increasing its axis 
position. The maximum number of steps was set to 10,000 (i.e., 
this is a fairly large number compared to the step size and the size 
of the search space) and each hill climbing trial started with step 
size 5 mm and then changed to 0.05 mm to do fine searching after 
it got stuck for the first time. 
Five independent experiments were conducted with each one 
containing up to 1,000 hill climbing trials starting from random 
positions. At the end of each trial, the location and the fitness 
value of the best solution were recorded. The Manhattan distances 
between this solution and all existing solutions found in previous 
trials were calculated and if the distance between any pair of 
solutions was less than a threshold (100 mm), a duplicate was 
claimed to have been found and the experiment was terminated. 
The difficulty of this problem is clearly evident from the 
experimental results. No duplicate could be found within the five 
experiments, which means that it is very likely that on average 
more than 1,000 samples are needed in order to find a duplicate. 
Using the method described in the last section, a conservative 
estimate of the number of optima in this problem is around one 
million. The distribution of fitness for the 1,000 best solutions 

(dsv=50 cm) from a certain experiment is shown in Figure 3 (top).  
This indicates that the hill climbing algorithm even had difficulty 
in finding solutions close to 1000 ppm let along 0 ppm. The 
distance distribution, taking into account the permutations of coils 
and current direction, is shown in Figure 3 (bottom) from which it 
is clear that all solutions were well separated from each other (i.e., 
the smallest distance was more than 650 mm). Based on these 
results, it is reasonable to say that this problem is extremely 
difficult for hill climbing and gradient-based algorithms unless 
they are lucky enough to start very close to the global optimum. 

 

 
Figure 3. Distributions of fitness values (top) and Manhattan 

distance (bottom) of best solutions.  

4. EXPERIMENTS 
4.1 Estimation of Distribution Algorithms 
Estimation of Distribution Algorithms (EDAs) [8] refer to a new 
class of population-based metaheuristic algorithms, which roughly 
follow the general framework of EAs. Instead of using traditional 
generator operators such as crossover and mutation, in EDAs, a 
probabilistic model of current promising individuals is maintained 
and all new individuals are generated by sampling from this 
model (Table 1). One of the major advantages of EDAs compared 
against other algorithms is that they can explicitly model the 
dependencies among problem parameters and utilize this 
information to conduct efficient searching. In optimization, 
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dependence means that it is impossible to optimize a problem by 
decomposing it into a set of one-dimensional problems and 
solving them independently. As a result, in order to solve 
problems with dependence structure efficiently, it is desirable to 
generate new individuals whose parameter values are chosen 
based on the problem structure.  

Table 1. The Framework of EDAs. 
 
 
 
 
 
 
 
 
 
A continuous EDA named EDAmvg based on a single Gaussian 
distribution with full covariance structure was used in this paper. 
In this algorithm, the probabilistic model is fully specified by the 
mean vector and the covariance matrix where off-diagonal 
elements represent the dependence information, which can be 
calculated according to their maximum likelihood estimates. New 
individuals are generated from this multivariate Gaussian 
distribution using Cholesky decomposition [9]. The advantage of 
EDAmvg is that it can be implemented very efficiently and still has 
the capability of capturing complex structure. EDAs belonging to 
this type such as EMNA [8] and RECEDA [9] have shown 
comparable or even better performance on a number of test 
problems compared to more sophisticated EDAs. 
One characteristic of many real-world problems is that they often 
have a large search space in terms of the range of each parameter 
and the number of parameters (dimensionality). As a 
consequence, a large population is often required to achieve 
satisfactory performance. Furthermore, the fitness functions may 
also involve some intensive computation. Fortunately, since 
EDAs are population-based algorithms, it is easy to apply parallel 
computation to significantly speedup the optimization process. 

 
Figure 4. The framework of parallel computation with 

Master/Worker structure. 
The approach used in our work is to, in each generation, separate 
the population into a number of subsets and assign each of them 
to a different process running on a different CPU/computer, which 
is similar to the structure in [2]. In Figure 4, the Master process 

contains the complete code of the EDA while each Worker 
process is dedicated to the evaluation of the fitness function. At 
each generation, the Master process sends individuals to each 
Worker process for evaluation, and Workers send the 
corresponding fitness values back to the Master process. The 
advantage of this framework is that it has a simple hierarchical 
structure and any modification of the optimization algorithm itself 
in the Master process has no influence on those Worker processes. 
Since the communication could conveniently be realized through 
shared files, there is no need to have a supercomputer with 
multiple CPUs, which is usually very expensive. Instead, a 
number of inexpensive PCs connected to a local network could be 
utilized with each one running a single process. In the mean time, 
since the volume of data that needs to be exchanged is often 
trivial compared to the speed of modern networks, the 
improvement of speed is very significant especially when the 
fitness function is very time-consuming and thus it is possible to 
employ a very large population and/or to run the algorithm for a 
large number of generations. 

4.2 Experiments with EDAmvg 
Some preliminary trials were conducted to investigate the 
performance of EDAmvg on the magnet design task with 10 coils. 
The search space and constraint handling were the same as those 
in the hill climbing experiment above. For EDAmvg, there are three 
parameters to be set: population size, number of generations and 
the selection operator. The population size was set to 1,000 with 
maximum number of generations equal to 100, allowing 100,000 
fitness function evaluations in total. Truncation selection with 
selection ratio 0.3 was used to choose the promising individuals 
(i.e., top 30% individuals were chosen to build the model). The 
initial population was generated in the standard way, by choosing 
each parameter of each individual randomly within the feasible 
search space. Unfortunately, no satisfactory results were found 
with the above setting and most solutions found had homogeneity 
more than 2,000ppm (dsv=50 cm). Another issue is that there 
were often some large coils in those solutions, resulting in very 
strong magnetic field, which is not desirable (i.e., the field 
strength should be maintained at less than 10T). Certainly, by 
increasing the population size and/or the number of generations, 
one can expect to get better results. However, our major interest 
here is not to simply solve this problem but to solve it efficiently.  

Figure 5. Even order harmonics of a positive coil at different 
axial positions: [50, 200, 600]. 

An investigation into the fitness function (and confirmed by our 
colleagues in MRI) reveals that the overall homogeneity is largely 
determined by the sum of the harmonics of each coil. Figure 5 
shows the even order harmonics from 2 to 18 of a positive coil at 

Master 

Worker (1) Worker (n)

Individuals Individuals 

Fitness Values Fitness Values 

Initialize and evaluate the population P

  While stopping criteria not met 

         Select some individuals Psel from P 

    Estimate the density function θsel 
    Create P’ by sampling from θsel 
    Evaluate individuals in P’ 

    Combine P and P’ to form the new P 

    End While 
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different axial positions (for symmetric designs, odd order 
harmonics are zero) from which some interesting patterns could 
be discovered immediately. For example, the second order 
harmonic is negative when the coil is close to the origin and 
gradually becomes positive when the coil is at the far end. In 
general, the relationship between the harmonics and the distance 
to the origin is nonlinear but quite smooth. Since the objective of 
optimization is to make the sum of harmonics as close to zero as 
possible with reasonable field strength, it is possible to come up 
with some heuristics about the layout of coils for good designs.  
The heuristic adopted in our work is simple. A small positive coil 
is placed close to the origin while a large positive coil is placed at 
the far end so that the second order harmonics generated by the 
two coils tend to cancel against each other. The other three coils 
are put in between with each one restricted to a sub-interval, to try 
to avoid overlaps in the designs generated. In fact, this heuristic is 
used to identify the area where good designs are likely to exist, so 
that the actual space that needs to be searched can be significantly 
reduced. 
The actual boundaries used are listed in Table 2 in which the axial 
length and inner radius were the same as before and the major 
change was the boundaries of axial position. Unlike in previous 
experiments where each coil was allowed to move freely along the 
Z-axis, all coils were restricted to some smaller ranges with 
possible overlapping (i.e., it is difficult to precisely determine the 
boundaries of each coil). Furthermore, the size of coil #1 was 
restricted to a small value and the size of coil #5 was intended to 
be large due to their locations with respect to the origin. 

Table 2. Boundaries of five coils 

# Axial 
Position 

Axial 
Length 

Number of 
Turns 

Inner 
Radius 

1 [10, 50] [20, 100] [200, 500] [480, 520] 

2 [100, 200] [20, 100] [-1000, 1000] [480, 520] 

3 [200, 400] [20, 100] [-1000, 1000] [480, 520] 

4 [300, 600] [20, 100] [-1000, 1000] [480, 520] 

5 [600, 700] [20, 100] [2000, 5000] [480, 520] 

 
New experiments were then conducted using this heuristic. The 
effect was dramatic and EDAmvg could often find some good 
solutions. Figure 6 shows the cross-section of a design with 20.9 
ppm (dsv=50cm) / 6.3 ppm (dsv=45cm) and the main field is 
around 6 T. The overall length of the magnet is around 1.41m, 
which is significantly less than conventional systems. 

 
Table 3. Boundaries of four coils 

# Axial 
Position 

Axial 
Length 

Number of 
Turns 

Inner 
Radius 

1 [10, 50] [20, 100] [200, 500] [480, 520] 

2 [100, 400] [20, 100] [-1000, 1000] [480, 520] 

3 [300, 600] [20, 100] [-1000, 1000] [480, 520] 

4 [600, 700] [20, 100] [ 2000, 5000] [480, 520] 

 

 
Figure 6. A 10-coil design (top) and a detailed view of the 

upper-right corner (bottom). 
Since the minimum number of coils needed is typically not 
known, additional experiments were conducted with 8 coils to 
find out whether it is possible to simplify the design. The 
boundaries used for this 8-coil design are listed in Table 3. 
Compared to Table 2, the only change is that a single coil #2 
replaced coils #2 & #3. Experimental results show that reducing 
the number of coils led to increasing performance of EDAmvg. 
With four coils to be optimized, the search space was reduced as 
the dimensionality decreased from 20 to 16 and the convergence 
speed and accuracy of EDAmvg all improved. Figure 7 shows a 
design with 9.0ppm (dsv=50 cm)/2.0ppm (dsv=45 cm) and the 
main field is also around 6 T. The overall length of the magnet is 
around 1.42 m. 
Although EAs/EDAs are general purpose optimization techniques, 
they may not be able to solve real world problems efficiently 
when used in a straightforward way. As shown by the results in 
this section, it is very important to utilize problem-specific 
knowledge whenever possible in complex situations. The heuristic 
used here, which is about the boundaries of each coil and specifies 
the spatial distribution of coils, has proven to be effective in 
identifying the general nature of a good solution so that EDAmvg 
could concentrate on promising area. In the meantime, this 
heuristic does not need to be very strict due to the global 
optimization ability of population-based algorithms.  
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Figure 7. An 8-coil design (top) and a detailed view of the 

upper-right corner (bottom). 

4.3 Dependence vs. Independence 
It is clear from the above results that significant dependencies 
exist among the problem variables. It is interesting to know 
whether EDAmvg is able to learn and utilize this dependence 
information. In EDAmvg, the probabilistic model is represented by 
a multivariate Gaussian. Previously, a full covariance matrix was 
employed to explicitly capture the dependence among variables. A 
simplified version of  EDAmvg (equivalent to UMDAc [8]) is to 
only use diagonal elements when generating new individuals. By 
doing so, no dependence is taken into account and each variable is 
generated independently of others. 
In order to demonstrate the importance of capturing dependence 
in this optimization task, both versions of  EDAmvg were run for 
10 trials with the same setting as in the last experiment (dsv=50 
cm). The mean fitness values of the best solutions found at each 
generation are plotted in Figure 8 (top) showing that EDAmvg 
found solutions of much lower quality when dependencies were 
not used. A pair-wise comparison (i.e., each pair of trials used the 
same random number seed) in terms of the quality of the final 
solutions is shown in Figure 8 (bottom) from which we can see 
that four trials out of 10 trials produced satisfactory results when 
capturing dependence. As a contrast, when no dependence was 
taken into account, all results were an order of magnitude worse. 

 

 
Figure 8. Comparison of the performance of EDAmvg with 

and without dependence. 

 

 
Figure 9. A 10-coil design with overall length 1.30 m (dashed 

line indicates a negatively wound coil).   
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4.4 Extensions 
Additional experiments were also conducted to further test the 
potential of our method. With a larger population size (e.g., 2000) 
and some slightly different heuristics (e.g., the position of the 
right-most coil), even shorter magnet designs could be found. 
Figure 9 shows such a design with overall length 1.30 m and 
homogeneity 9.6ppm (dsv=45cm).  

5. CONCLUSION 
In this paper, the magnet design task in MRI systems was 
introduced as a challenging real-world problem for EAs. A 
continuous EDA was used to find the appropriate configuration of 
coils in a short magnet design. It has shown that within only a 
moderate number of fitness evaluations, various designs of high 
homogeneity with length around 1.4 m could be found reliably. 
Certainly, our current results are still not comparable with the best 
available designs, which were often based on very large-scale 
experiments. A straightforward direction for future work is to 
conduct further experiments to investigate the possibility of more 
advanced designs such as short magnets with length close to 1 m 
and asymmetric designs with dsv close to the open end. Usually, 
many more coils will be needed in such situations and a much 
larger population would be required accordingly.  
This paper has discussed the application of a specific kind of 
algorithm to a specific real-world problem. Nevertheless, we have 
attempted to emphasize some important general issues such as 
problem characterization, dependence capture, using problem-
specific knowledge and parallel computation, which we hope 
could be helpful to solving a wider range of real-world problems. 
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